Temporal Hierarchical Clustering
نویسندگان
چکیده
We study hierarchical clusterings of metric spaces that change over time. This is a natural geometric primitive for the analysis of dynamic data sets. Specifically, we introduce and study the problem of finding a temporally coherent sequence of hierarchical clusterings from a sequence of unlabeled point sets. We encode the clustering objective by embedding each point set into an ultrametric space, which naturally induces a hierarchical clustering of the set of points. We enforce temporal coherence among the embeddings by finding correspondences between successive pairs of ultrametric spaces which exhibit small distortion in the Gromov-Hausdorff sense. We present both upper and lower bounds on the approximability of the resulting optimization problems.
منابع مشابه
Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملTA-clustering: Cluster analysis of gene expression profiles through Temporal Abstractions
This paper describes a new technique for clustering short time series of gene expression data. The technique is a generalization of the template-based clustering and is based on a qualitative representation of profiles which are labelled using trend Temporal Abstractions (TAs); clusters are then dynamically identified on the basis of this qualitative representation. Clustering is performed in a...
متن کاملA Topic Detection Approach Through Hierarchical Clustering on Concept Graph
Topic detection and tracking (TDT) algorithms have long been developed for the discovery of topics. However, most existing TDT algorithms suffer from paying less attention to: (1) temporal distance between a pair of topics; (2) the mutual effect between highly correlated topic terms. In this paper, we proposed a novel topic detection approach by applying hierarchical clustering on the construct...
متن کاملAutomatic synthesis of synergies for control of reaching--hierarchical clustering.
In this paper we describe a novel method for determining synergies between joint motions in reaching movements by hierarchical clustering. A set of recorded elbow and shoulder trajectories is used in a learning algorithm to determine the relationships between angular velocities at elbow and shoulder joints. The learning algorithm is based on optimal criteria for obtaining the hierarchy of descr...
متن کامل